Design Activity Framework for Visualization Design

Sean McKenna, Dominika Mazur, James Agutter, Miriah Meyer
University of Utah
visualization design
What We Did

cybersecurity redesign project

Who We Are

visualization experts

psychologist
dominika

designer
jim
visualization & creative re-design
Challenges

- connect actions we take and decisions we make

process models

decision models

Sedlmair et al, “Design study methodology” 2012

Munzner, “A Nested Model for Visualization Design and Validation” 2010
Challenges

- support a **more flexible** design process

engineering process

creative process

Tory & Möller, “Human factors in visualization research” 2004

Kumar, 101 Design Methods, 2012
• where am I?
• what is my goal?
• how do I get there?

} actionability
 + flexibility
Design Activity Framework

where am I?
- motivation

what is my goal?
- outcomes

how do I get there?
- methods

specific purpose behind the methods and actions that are performed within that activity

specific, unique results of an activity, characterized by which level or levels of the nested model they address

actions or techniques that a designer employs to either generate or evaluate outcomes
Design Activity Framework

four activities

understand

ideate

make

deploy

Design activity

- motivation
- outcomes
- methods
• where am I?

• what is my goal?

• how do I get there?
Design Activity Framework

Understand

motivation: finding the needs of the user

Ideate

generate good ideas to support needs

Make

concretize ideas, make them tangible

Deploy

bring a prototype into effective action
• where am I?

• what is my goal?

• how do I get there?
Design Activity Framework

<table>
<thead>
<tr>
<th>Understand</th>
<th>Ideate</th>
</tr>
</thead>
<tbody>
<tr>
<td>motivation: finding the needs of the user</td>
<td>generate good ideas to support needs</td>
</tr>
<tr>
<td>outcome: sets of design requirements</td>
<td>sets of ideas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Make</th>
<th>Deploy</th>
</tr>
</thead>
<tbody>
<tr>
<td>concretize ideas, make them tangible sets of prototypes</td>
<td>bring a prototype into effective action visualization system</td>
</tr>
</tbody>
</table>
Design Activity Framework

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>i</th>
<th>m</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain characterization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data / task abstraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>encoding / interaction technique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>algorithm design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Understand** (u)
- **Ideate** (i)
- **Make** (m)
- **Deploy** (d)
• where am I?

• what is my goal?

• how do I get there?
Design Activity Framework

- **Motivation**
 - Divergent: create e.g. brainstorming
 - Generative

- **Outcomes**
 - Convergent: filter e.g. feedback, user studies
 - Evaluative

- **Methods**
| # | method | u | g | e | i | g | e | m | g | e | d | g | e | v | definition | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | A/B testing | | | | | | | | | | | | | | | “compare two versions of the same design against a predetermined goal” [18] |
| 2 | activity map | | | | | | | | | | | | | | | “structuring activities of stakeholders and a list of activities gathered during research. . . . relationships” [14] |
| 3 | AEIOU framework | | | | | | | | | | | | | | | “organizational framework reminding the researcher of the context of their work. . . . taxonomy of user behaviors” [18] |
| 4 | affinity diagramming | | | | | | | | | | | | | | | “process used to externalize and meaningfully organize design ideas and concepts” [6] |
| 5 | algorithmic performance | | | | | | | | | | | | | | | “quantitatively study the performance of algorithms” [13] |
| 6 | analogical reasoning | | | | | | | | | | | | | | | “cognitive strategy in which previous knowledge is applied to new situations. . . . requirements of a novel situation” [8] |
| 7 | appearance modeling | | | | | | | | | | | | | | | “systematic examination of the materials, aesthetics, and interactive qualities of objects contributed to an understanding of their physical characteristics” [18] |
| 8 | artifact analysis | | | | | | | | | | | | | | | “captures the users’ patterns of activity. . . . error message, menu-item selection, dialogue or web-page access. . . . can also capture contextual memory and domain knowledge” [18] |
| 9 | automated logging | | | | | | | | | | | | | | | “simulating situations of user activity concepts. . . . through observation and conversation on the concepts” [14] |
| 10 | behavioral prototype | | | | | | | | | | | | | | | “helping understand the users’ goals, objectives, and activities” [15] |
Methods: Paper Prototyping

“create a **paper-based simulation of an interface** to test interaction with a user”

Maguire, “Methods to support human-centred design” 2001

Lloyd & J. Dykes, “Human-centered approaches in geovisualization design” 2011
“personal letter written to a product… [to reveal] profound insights about what people value and expect”

Martin & Hanington, Universal Methods of Design: 100 Ways to Research, 2012
• where am I?

• what is my goal?

• how do I get there?

{ actionability + flexibility }
Capturing Design Flow

- **flexible**: support messiness

- two basic **movement principles**
 1. **forward** movement is **ordered**
 2. activities can be **nested** or conducted in **parallel**
Process Timelines

- redesign project

Process Stages

- **d (Plan)**
 - May: plan, artifact analysis, literature review

- **u (Understand)**
 - Jun: open coding, identify key opportunities
 - Jul: concept sketches, analysts interview

- **i (Ideate)**
 - Aug: wireframes, developer interview

- **m (Make)**
 - Sep: interface mockups, time series ideation
 - Oct: developer prototype, A/B testing + questionnaire

- **m (Deploy)**
 - Nov: final deadline
Process Timelines

- colleague's design study

- Interviews
- Tool analysis
- Participatory design
- 1st data prototype
- 2nd prototype + lit review
- Iterative interviews
- Consolidation
- 1st release
- 2nd release
- 3rd data prototype
- 3rd release
Process Timelines

• **communicates** a messy, creative process

• supports flexibility
 • nested
 • parallel
• **motivation**

 - **Understand**
 - Motivated finding needs of the user
 - Outcome: sets of design requirements
 - **Ideate**
 - Generate good ideas to support needs
 - Outcome: sets of ideas
 - **Make**
 - Concretize ideas, make them tangible
 - Outcome: sets of prototypes
 - **Deploy**
 - Bring a prototype into effective action
 - Outcome: visualization system

• **outcomes**

• **methods**

 - **actionability**
 - **flexibility**
Take-Aways

• **design activity framework** can influence how you:

 • design

 • connect

 • explore

 • communicate

• **embrace the messiness!**
Questions?

Many thanks to: Michael Sedlmair, Mike Kirby, Alex Bigelow, Ethan Kerzner, Nina McCurdy, Sam Quinan, Kris Zygmunt, and Matthew Parkin

This work is sponsored in part by the Air Force Research Laboratory and the DARPA XDATA program, and by the U.S. Army Research Office under a prime contract issued to Intelligent Automation, Inc. The content of the information does not necessarily reflect the position or the policy of the government or Intelligent Automation, Inc., and no official endorsement should be inferred.